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fluid in a porous medium:
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Abstract The solidification of a superheated fluid-porous medium contained in a rectangular
cavity is studied numerically. The bottom and side walls of the cavity are insulated while the top
wall is maintained at a constant temperature below the freezing point of the saturating fluid. The
study is focused on the effects of superheat on the development of natural convection and heat
transfer during the solidification process. For a fluid initially at a temperature above the freezing
point, the results obtained by neglecting convection overpredicts the solidification time by about 12
percent for a Rayleigh number of 800. When convection is taken into account, it is found that the
solidification process consists of three distinct regimes: the conduction regime, convection regime,
and the solidification of the remaining fluid that can be described by the Neumann solution for the
solidification of a fluid at its freezing point. The numerical simulations are based on the Darcy-
Boussinesq equations, using the front tracking method in a transformed coordinate system. The
entire solidification process is described in terms of the evolutions of the streamlines and isotherm
patterns, the maximum and average temperatures of the fluid, the interface position, and the heat
transfer rate. The parametric domain covered by these simulations is 0 ≤ Ra ≤ 800, 0 ≤ Stl ≤ 0.67,
Sts = 0.3 and XL = 1 where Ra is the Rayleigh number, Stl the liquid Stefan number, Sts the solid
Stefan number, and XL the aspect ratio of the cavity.
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Nomenclature
cp = heat capacity, J/kg°C
d = diameter of the porous matrix sphere, m
g = gravitational acceleration, m/s2

H = height of the cavity, m
h = dimensionless thickness of the unstable layer
k = conductivity, W/m°C
K = permeability, m2

L = length of the cavity, m
n = unit vector normal to the solid-liquid

interface
Nu = average temperature gradient at the cooled

= surface
Nui = average temperature gradient at the 

interface (on the liquid side)
P = pressure, N/m2

R = αs
eσl

e /α l
eσs

e, diffusivity ratio
Ra = λg∆TlKH/(vα l

e), Rayleigh number, based 
on the height of the cavity

Rae = RaTmaxh, effective Rayleigh number, based
on the thickness of the unstable layer

S = S*/H, dimensionless interface position
Sh = Stl/Sts, superheat parameter
Stl = cl

p∆Tl/φ∆hf, Stefan number of the liquid phase
Sts = cl

p∆Ts/φ∆hf(k
s
e/k

l
e ), Stefan number of the 

solid phase
t = t*α l

e/H
2σl, dimensionless time

ts = solidification time
Tl = (Tl* – T*

f )/∆Tl, dimensionless temperature 
in the liquid

Ts = (T*
f – Ts*)/∆Ts, dimensionless temperature

in the solid
Tave = average temperature in the liquid
Ti* = initial superheating temperature, °C
T*c = cooling temperature on the top surface, °C
T*f = fusion temperature, °C
V = velocity in the liquid region, m/s
Vn = V*

nH/α l
e interface velocity in the direction

= normal to the interface
x,y = Cartesian coordinates
XL = L/H, aspect ratio of the cavity
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Introduction
Recently, the problem of phase change in the presence of natural convection has
received a growing interest since modern technologies need more precise and
systematic control of this type of problem, which still represents one of the most
complicated subjects in heat transfer and convective flow.

The first difficulty in predicting the heat transfer and phase change rate is
the proper choice of a length scale, as one has to deal with a moving boundary,
i.e. with a system characterized by a time-dependent length scale. This can be
best illustrated by the freezing or melting of a phase change material (PCM),
initially at its fusion temperature, for which an exact closed-form solution was
found (the Neumann solution) in terms of a similarity variable x/√

–
t . One can

thus look at √
–
t as an appropriate length scale within the spirit of a dimensional

analysis. This solution, however, only applies to the case of pure conduction
(Prud’homme and Nguyen, 1989; Prud’homme et al., 1989). In fact, while the
solidification of a bounded fluid layer without superheat as well as the
solidification of a semi-infinite fluid medium with superheat can be solved
analytically, the case of a bounded fluid layer at a temperature above its freezing
point can only be solved numerically, even if convection is neglected (Boger and
Westwater, 1967; Chellaiah and Viskanta, 1988; 1989).

In the presence of natural convection, no analytical solution is possible, and
much effort is needed to fully uncover the various scales and regimes, even in
the simplest phase change problem, viz. the melting of a rectangular solid block,
initially at its fusion temperature and subject to an isothermal heating at one of
its vertical sides. Recently, Bejan (1989) and Jany and Bejan (1988) have made a
detailed analysis of this problem to identify the basic scales of the phenomenon
and to construct a heat transfer correlation for the entire melting process. The
results, however, do not apply to the case of a subcooled solid which, as pointed
out by the authors, “marks the end of the territory we can cover with the scaling
law constructed in this paper”. In fact, “it is not a question of merely introducing
a new dimensionless group (the solid Stefan number), rather it is the challenge
of recognizing the time scales of the heat transfer regimes that keep changing
on both sides of the liquid-solid interface. In this effort, easy access to numerical

Greek symbols
α l

e = kl
e/(ρc)l, thermal diffusivity, m2/s

αs
e = ks

e/(ρc)s, thermal diffusivity, m2/s
ξ1,ξ2 = transformed coordinates in the liquid region
η1,η2 = transformed coordinates in the solid region
∆hf = latent heat of fusion, J/kg
∆Tl = T*

i –T*
f, temperature scale in the liquid layer, °C

∆Ts = T*
f –T*

c, temperature scale in the solid layer, °C
λ = isobaric coefficient of thermal expansion of

fluid, (°C)–1

µ = viscosity, Ns/m2

ν = kinematic viscosity, m2/s
ρ = density, kg/m3

φ = porosity
ϕ = ϕ*/α l

e, dimensionless stream function

σ = ratio between the heat capacity of the fluid-
saturated medium and that of fluid

Superscript
l = the liquid
m = the porous matrix
s = the solid
* = dimensional variables

Subscript
e = effective property of the saturated porous

= medium
f = quantity at fusion point
max = maximum value
min = minimum value
o = a reference value
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experiments that account for conduction in the solid is essential” (Jany and
Bejan, 1988).

Moreover, the problems of convection, either in a fixed phase or in a PCM, can
be divided into two categories: convection in a cavity heated from the side, and
convection in a cavity heated from below. The onset and evolution of these two
types of convection are quite different: when heated from the side, convection
arises as soon as a horizontal temperature gradient is induced, however small it
may be. On the other hand, when heated from below, the fluid can remain
motionless as long as the vertical temperature gradient is not strong enough for
the buoyancy to overcome the viscous force. The time scales of these two cases
can thus be expected to differ significantly during a phase change process.

This study considers the solidification process in a rectangular porous cavity
cooled from above: the fluid is initially at a temperature above its freezing point,
and contained in a porous cavity whose bottom and side walls are insulated
while the top wall is maintained at a temperature below the freezing
temperature. Attention will be focused on the effect of the superheat on the
development of the convection flow, and on the heat transfer mechanisms of the
various regimes during the process in order to set the stage for the construction
of a unified heat transfer correlation.

Specific applications of this study include freezing of soil in cold weather
regions, processing and preservation of foodstuffs, moulding of composite
materials, etc.

Governing equations
The physical problem considered here is the solidification of a Newtonian fluid
in a rectangular cavity containing a porous medium, as shown in Figure 1. The
fluid is initially superheated at a uniform temperature T*

i which is greater than
its fusion temperature T*

f. As t ≥ 0, a temperature T*
c, lower than the fusion

temperature T*
f, is imposed on the top wall of the cavity, while all other

Figure 1.
Geometry of the system
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boundaries are maintained adiabatic. As a consequence of this subcooling, a
solid layer is formed between the cooled surface and the initially superheated
fluid, until the whole cavity is solidified.

In the present model, the following additional assumptions are made for
further simplification:

(1) The flow is laminar and two-dimensional.

(2) The liquid is Newtonian and incompressible.

(3) The thermophysical properties are constant except for the density in the
buoyancy term (Boussinesq approximation).

(4) The density change due to solidification is negligible (solid density is
equal to liquid density).

(5) The Reynolds number based on the pore size is small enough for the
Darcy model to be valid, i.e. the effects of inertial force (Forchheimer
term) and vorticity diffusion near solid boundaries (Brinkman term) can
be neglected.

Under these assumptions, the problem considered in this study can be described
by

the continuity equation

(1)

the Darcy equation

(2)

the energy equation in the liquid region

(3)

the energy equation in the solid region

(4)

and the energy balance equation at the interface

(5)

where Vn is the interface velocity in the direction n normal to the interface.
The buoyancy term in the momentum equation can be determined by the

state equation
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(6)

Note that, for the sake of clarity, all dimensional quantities in equations (1)-(6)
have been written without superscript*.

By introducing the stream function ϕ such that V = (ϕy, –ϕx), to satisfy the
continuity equation, equations (1)–(6) can be reduced to the dimensionless system

(7)

(8)

(9)

(10)

where

and the dimensional scales

are used.
The boundary conditions associated with the non-dimensional equations are:
T = –1, on the top wall
∂T—
∂n

= 0, on the bottom and side walls
ϕ = 0, on the interface and on the cavity walls
T = 0, on the interface

(at the interface),
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Note that the condition ϕ = 0 on the interface implies normal velocity along the
interface is zero, as it has been assumed that density change due to
solidification is negligible.

The initial condition is

In applying the foregoing equations, all quantities are to be taken as their
averages over a representative elementary volume. In particular, the mean
(effective) thermal capacitance of the liquid-saturated porous region is given by

while the effective thermal capacitance of the frozen region is 

The effective conductivities can be defined in a similar way.
Note that the coefficients σ in equations (3-4) are the ratios between the

effective thermal capacitance and the fluid capacitance, while the αs are the
ratios between the effective conductivity and the fluid heat capacitance, in the
liquid and solid regions respectively.

The coefficient K that appears in the Darcy equation, defined as the
permeability of the pore matrix, essentially depends on the microstructure of
the medium. For a packed bed of spheres, K can be expressed in terms of the
porosity φand the sphere diameter d as 

(For example, with d = 3mm and φ= 0.4 K ≈ 10–8m2).
Furthermore, due to their similar form, the two dimensionless parameters Stl

and Sts have been called the liquid and solid Stefan numbers respectively.
Alternatively, one could use a solid Stefan number Sts, and a superheat parameter
Sh = Stl/Sts. In this problem, the solid Stefan number can be associated with the
driving force for solidification , while the liquid Stefan number, or alternatively the
superheat parameter, indicates the “resistance” to the solidification process. The
competition between these two forces, in controlling the solidification process, is
closely related to the evolution of the temperature fields in both the solid and liquid
regions, as expressed in the energy balance equation at the interface. Note that the
strength of the driving force is controlled by conduction in the solid region while
the strength of the resistance force is controlled by both conduction and convection
in the liquid region. One should remark in passing that although the liquid Stefan
number (or the superheat parameter) and the Rayleigh number are both directly
proportional to the temperature difference in the liquid region, it is the Rayleigh
number, and not the liquid Stefan number, that indicates the strength of
convection. In fact, if no convection can develop (such as in a zero-gravity
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environment, or in the case of solidification from below), the liquid Stefan number
then indicates the strength of conduction in the superheated liquid region.

Solution method
Owing to the existence of the moving interface S, the solid and liquid domains
are irregular and time-dependent. To overcome this difficulty, a curvilinear
system of coordinates is used to transform the physical domain into a
rectangular region for the computations. The transformations

and

map the irregular domains into two rectangles,

and

for the liquid and the solid regions respectively.
The numerical computation is initiated with a layer of solid of a constant

thickness corresponding to an initial interface position S0 = 0.95. The
solidification process is simulated until the average interface position reaches
the value S = 0.05. This choice of S0 was adopted after tests had been made to
ensure that a thinner initial solid layer (S0 = 0.98) did not change the subsequent
evolution of the interface in any significant way.

A finite-difference method based on a control volume formulation was used to
obtain the numerical solutions. The discretized equations were derived by using a
power-law interpolation scheme for the spatial discretization and a standard
forward difference approximation for the time derivative. Computational grids of
31 × 21 and 31 × 11 are used, respectively, for the liquid and solid domain, with a
dimensionless time step of about 10–3. A finer grid size and/or time step only
change the results by less than 1 percent for some typical cases considered in this
study. Details of the numerical method and the validation of the computer code
can be found in Zhang et al. (1991). It is worth noting in particular that the
updating of the solid/liquid interface was achieved in the following way: at each
time step, the interface position S was determined from the energy balance at the
interface. The stream function ϕ, temperature Tl and Ts were then simultaneously
solved using ADI technique. The convergence criterion used was that 
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where Φ is T, S or ϕ, superscript k is the kth iterative step and ε (10–4) is the
typical tolerance. The position of the interface S was then recalculated using the
new values of ϕ and T, this procedure being repeated until converged solutions
were obtained. Usually, three to ten iterations were needed at each time step.

Results and discussion
As described in the previous section, the problem of solidification considered
here is governed by five dimensionless parameters, namely the Rayleigh
number Ra, the Stefan numbers Stl and Sts, the aspect ratio XL and the
diffusivity ratio R. The present study is focused on the Rayleigh number and the
liquid Stefan number in order to describe the effects of convection on the
solidification of an initially superheated fluid. For a given fluid-saturated
medium, the Rayleigh number and the fluid Stefan number are parameters that
can be changed simultaneously as the initial superheat is changed, since they
are both proportional to ∆tl = T*

i – T*
f. The two pairs of parameters (Rao, Stlo) and

Ra1, Stl1) are related by

(11)

Hereafter, the various values of Ra and Stl will be expressed in terms of a reference
set of values Rao = 200 and Stlo = 0.1674. Other parameters are chosen to be Sts =
0.3068, R = 7.366, XL = 1. These parameters have been chosen for water around
its fusion point, but should be regarded as representative of a typical range of
values under consideration; they do not restrict the validity of the results to any
specific fluid. (In fact, as far as water is concerned, the peculiar behavior of
density inversion is not considered here. A detailed study on this latter
phenomenon was presented in Zhang et al. (1991) and Zhang and Nguyen (1990).)

For the case of an initially superheated liquid, it should be noted that as soon
as the solidification begins, a very thin thermal boundary layer is formed
beneath the solid-liquid interface. This layer is potentially unstable against the
Bénard convection as the fluid adjacent to the interface is cooler, therefore
heavier, than the fluid underneath. The parameter which controls this type of
instability is the ratio between the buoyancy and viscous forces within the layer,
namely the effective Rayleigh number

(12)

where Tmax is the maximum temperature difference within the unstable fluid
layer, and h is defined as the dimensionless thickness of the fluid layer
comprised between the interface and the isotherm Tl = 1 – 10–4 if Tmax > 1 –
10–4; otherwise it is the average thickness of the whole liquid layer.

From this definition it appears that both Tmax and h, and therefore Rae, are
functions of time. One should expect that convection will exist only while the
effective Rayleigh number is high enough (i.e. above a certain critical value for
Bénard convection to be maintained).
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In order to evaluate the effect of convection on the solidification of a
superheated fluid, let us first consider the results obtained by assuming that
pure conduction is the sole mechanism of heat transfer during the whole process.

Solidification by pure conduction
Solutions by pure conduction were obtained from equations (7)-(10) by setting 
Ra = 0.

The evolutions of the maximum temperature Tmax, the average temperature
of the fluid Tave, the average interface position S, and the heat transfer rate at
the top of the cavity, are shown in Figures 2-4 for the solidification process (0.05
≤ S ≤ 0.95). The heat transfer rate is represented by the Nusselt number Nu,
which is here defined as the average dimensionless temperature gradient. The
average temperature Tave is the arithmetic mean value of the calculated
temperature in the liquid region.

Figure 2 corresponds to the particular case of a fluid initially at its fusion
temperature (Stl = 0) for which a closed-form solution exists (Prud’homme et al.,
1989). Figures 3-4 correspond to Stl = Stl0 and 3Stl0 respectively. Although these
figures are rather small to be self-explained, they clearly illustrate the following
discussion.

First, for the case presented in Figure 2, the numerical results obtained for
the evolutions of the interface position and the Nusselt number agree perfectly
with the Neumann solution for the solidification of a fluid initially at its fusion
temperature, i.e. the solidified layer grows as √

–
t while the Nusselt number

decreases as 1/√
–
t. Note that the numerical simulation was stopped at t ≈ 1.5

when S = 0.05. It can be then deduced that the time necessary to solidify the

Figure 2.
Evolution of the
interface position and
heat transfer rate at 
the cooling surface for
Stl = 0
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whole cavity will be 1.2/(1 – 0.05)2 = 1.65, and the time for half of the cavity to
solidify is 0.41.

When the fluid is initially at a temperature above its fusion point, for
example when Stl = Stl

0, it was found that Tmax remains almost unchanged
(Tmax ≈ 1) during a short time t ≈ 0.7 as can be seen from Figure 3. The time for
the effect of the subcooling to reach the lower boundary is thus about 10 percent
of the time to completely evacuate the superheat, and about 4 percent of the time
to solidify the whole cavity. As a consequence, by shifting the time by t ≈ 0.07,
the curves of Tmax and Tave practically coincide for the rest of the cooling
process. The same phenomenon occurs at a higher initial temperature, as shown
in Figure 4, for Stl = 3Stl

0. Furthermore, it appears that Figures 2, 3 and 4

Figure 3.
Evolution of Tmax, Tave,

S and Nu for Stl = Stl0
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corresponding to various liquid Stefan numbers are quite similar. In fact, they
coincide when drawn on a time scale τ = t/ts, except for the average interface
curve which slightly changes as Stl is varied from 0 to 3Stl0. In other words, if we
use a renormalized time τ = t/ts, we shall obtain a “universal” curve for each of
the variables Tmax, Tave, S and Nu, while Figure 5 provides a correlation
between the solidification time ts and the liquid Stefan number Stl.

Solidification in the presence of convection
Figures 6 and 7 present the evolution of the quantities of interest, viz Rae, Tmax,
Tave, ϕmax, S and Nu for Rayleigh numbers corresponding to the liquid Stefan
numbers considered above (note the relationship between Ra and Stl, equation
(11)).

Figure 6, for Stl = Stlo, Ra = Rao shows that the maximum stream function is
attained at t ≈ 0.13 while the effective Rayleigh number reaches its peak value

Figure 4.
Evolution of Tmax, Tave,
S and Nu for Stl = 3Stl0
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(Rae ≈ 178) at t ≈ 0.025. This time lag may be due to the very small growth rate
of the disturbances during the initial development of Bénard convection. If it is
so, it would be difficult to “match” the onset time of convection as predicted by
the stability theory with the “onset time” as observed either in experiments or
in numerical simulations. Once convection sets in, the maximum as well as the
average temperatures decrease more rapidly than in the previous case while the
solidification is slightly slowed down. One notes that the convection activity as
indicated by the maximum value of the stream function (ϕmax) is strongest at t
≈ 0.14 before decreasing to zero at t ≈ 0.4. As can be expected, the convective
flow enhances the heat transfer rate on the liquid side corresponding to a bell
shape of the Nusselt number Nui at t ≈ 0.14 (but not seen on the curve of Nu).

For Stl = 3Stl
o, Ra = 3Rao, Figure 7 shows that convection becomes quite

strong (ϕmax ≈ 12.4) and its onset coincides with the maximum effective
Rayleigh number (Ral ≈ 559) at t ≈ 0.015. The flow becomes, thereafter,
negligibly weak at t ≈ 0.4. The effect of convection is now reflected in both
Nusselt numbers, on the liquid side and at the top of the cavity: the onset of
convection induces a sharp jump in the curves of Nu versus time. As a
consequence of this enhanced heat transfer, the inverse phenomenon of melting
occurs at the onset of convection, as can be clearly seen in Figure 8 where the
interface position is shown at different times. By noting that the interface
movement is governed by the equation Vn = Sts∂Ts

—∂y – Stl∂Tl—∂y , the interface velocity
Vn can be positive, i.e. melting can occur, if the superheat is high enough for the

Figure 5.
Solidification time vs.

liquid Stefan number (a)
by conduction only; (2)

by convection
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Figure 6.
Evolution of Rae, Tmax,
Tave, S and Nu for Stl =
Stl0, Ra = Ra0
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Figure 7.
Evolution of Rae, Tmax,
Tave, S and Nu for Stl =

3Stl0, Ra = 3Ra0
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heat transfer rate on the liquid side, – Stl∂Tl—∂y , to become greater than that on the
solid side, – Sts∂Ts

—∂y . In fact, as convection arises, the hot fluid impinging on the
interface can sufficiently increase the heat transfer to induce a local melting in
that area. This melting cannot continue for long as the solid layer gets thinner
and more heat is transferred by conduction through the top of the cavity to
balance the heat input from the superheated fluid. This phenomenon has been
observed in the experiments of Boger and Westwater (1967). Also, in the
simulation of melting from below, it was found that refreezing can occur during
the transition period of the convection form (Zhang et al., 1991). These results
clearly show that the effect of convection is to enhance the cooling of the
superheated fluid, and to slow down the solidification process during that time.

The development of the convection flow for Stl = Stl
o and Stl = 3Stl

o
respectively is described by the streamlines and isotherms shown in Figures 9
and 10, where the increments between isotherms are Tmax/10 and between
streamlines are (ϕmax – ϕmin)/10. One can remark that at the onset of convection,
the flow pattern consists of rather regular cells and the isotherms are nearly
horizontal, as can be expected from the Bénard type convection. As convection
further develops, the isotherms become more distorted, and the convection cells
become more unequal to vanish one by one, until there remains only a residual
unicellular flow of negligible strength. As the superheat is increased, the
strength and the number of convection cells also increases. One can also note

Figure 8.
Interface positions at
various times for Stl =
3Stl0, Ra = 3Ra0
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Figure 9.
Streamlines (left) and

isotherms (right) at
various times during the
solidification process for

Stl = Stl0, Ra = Ra0
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from the isotherm patterns that a thermal boundary layer is formed along the
solid-liquid interface shortly after the onset of convection, but disappears at
later times, while the fluid in the lower part of the cavity is horizontally
stratified due to the effect of the adiabatic bottom wall. By examining the flow
field at the later stage of its development, one can note that the convection is
still relatively strong while the effective Rayleigh number already falls well
below the Bénard critical value (i.e. 4π2). More remarkably, the flow and
temperature fields are not symmetric with respect to the centerline (x = L/2) of
the cavity. This is in contrast with the results of melting from below where the
flow and isotherm patterns are perfectly symmetric with respect to the
centerline during the whole melting process, as have been obtained by Zhang
et al. (1991). The asymmetry of the flow and temperature fields in the present

Figure 10a.
Streamlines (left) and
isotherms (right) at
various times during
the solidification
process for  Stl = 3Stl0,
Ra = 3Ra0
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case is essentially due to its transient character during the whole cooling
process where the initial perturbations at the onset of convection are playing
a dominant role. In other words, the results obtained here show the growth
and decay of arbitrary (numerical) perturbations while energy is continuously
extracted from the flow domain via the solidification process. Under these
circumstances, an asymmetric solution thus seems rather “natural” . However,
as the governing equations and boundary conditions are symmetric for x →
–x, the solution obtained here is just one of a pair, the other being its mirror
image about the centerline x = L/2, with an equal probability of occurring.
These results clearly show that the development of convection during the
solidification process in a cavity cooled from above is completely different
from the melting process in a cavity heated from below (Zhang et al., 1991). In

Figure 10b.
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other words, the results obtained in one case cannot be applied or generalized
to the other, as it is usually done when convection is neglected and only
conduction is taken into account. 

On the basis of these results, it can be concluded that the solidification
process of a superheated fluid can be divided into three distinct stages:

(1) The conduction stage: at this early stage, convection cannot yet develop
and the solidification as well as the cooling of the fluid are simply
governed by conduction heat transfer. The time scale of this stage is a
decreasing function of the superheat.

(2) The convection stage: as long as the effective Rayleigh number
corresponding to the thermally unstable layer beneath the solid-liquid
interface is high enough to maintain the Bénard convection, its effect is
essentially to evacuate the superheat from the cavity and to slow down
the solidification rate, and even to remelt the solid phase. The time scale
in this stage is governed by the convective cooling process.

(3) The pure conduction stage: at the end of the convection regime, the
superheat is reduced to zero and the fluid is at its freezing point. The
solidification process is then governed by conduction in the solid phase
only. This stage is completely determined by the well-known Neumann
solution of the classic Stefan problem with a time scale of the order of √–

t .

The overall effect of convection on the solidification process is represented in
Figure 5, which shows that neglecting the effect of convection amounts to over-
estimating the solidification time by about 12 percent if Ra = 800 and Stl = 0.67.

Conclusion
A study has been made of the solidification of a superheated fluid contained in
a rectangular porous cavity whose upper boundary is maintained at a
temperature below the freezing point, while all other boundaries are perfectly
insulated. It was found that the development of convection during the
solidification from above is quite different from that observed in the melting
from below. While the overall effect of convection is to reduce the total
solidification time, it actually slows down the solidification rate during its most
active period, where the enhanced heat transfer essentially contributes to
evacuate the superheat of the fluid, and even to melt the solid phase.

Finally, it should be noted that while some studies have been made of the
solidification of a superheated fluid in a cavity with one boundary maintained at
a temperature above the freezing point, while another (opposite) wall is subjected
to a subcooling temperature, no study has been made (to our knowledge) of the
problem considered here, i.e. the solidification of a cavity with the upper
boundary subcooled and all other walls adiabatic. Although in almost all phase
change problems, the heat transfer mechanism has been recognized to involve
both conduction and convection, the present process is characterized by a
succession of three distinct stages as described in the preceding section, namely:
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(1) The conduction stage, where both the liquid and solid phases are
governed by conduction.

(2) The convection stage, where convection dominates the cooling process of
the superheated fluid while conduction controls the heat removal
through the solid phase.

(3) The pure conduction stage, where solidification is completely governed
by conduction in the solid, with no heat transfer in the remaining liquid.
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